Advances in technology have enabled MOOCs possible but can also change how live classes can be taught, as discussed in this article about a Harvard physics professor's use of "peer instruction".

Twilight of the Lecture
by Craig Lambert
Harvard Magazine
March-April 2012

Quote
Mazur’s reinvention of the course drops the lecture model and deeply engages students in the learning/teaching endeavor. It starts from his view of education as a two-step process: information transfer, and then making sense of and assimilating that information. “In the standard approach, the emphasis in class is on the first, and the second is left to the student on his or her own, outside of the classroom,” he says. “If you think about this rationally, you have to flip that, and put the first one outside the classroom, and the second inside. So I began to ask my students to read my lecture notes before class, and then tell me what questions they have [ordinarily, using the course’s website], and when we meet, we discuss those questions.”

Thus Mazur begins a class with a student-sourced question, then asks students to think the problem through and commit to an answer, which each records using a handheld device (smartphones work fine), and which a central computer statistically compiles, without displaying the overall tally. If between 30 and 70 percent of the class gets the correct answer (Mazur seeks controversy), he moves on to peer instruction. Students find a neighbor with a different answer and make a case for their own response. Each tries to convince the other. During the ensuing chaos, Mazur circulates through the room, eavesdropping on the conversations. He listens especially to incorrect reasoning, so “I can re-sensitize myself to the difficulties beginning learners face.” After two or three minutes, the students vote again, and typically the percentage of correct answers dramatically improves. Then the cycle repeats.
Back in 2009, the NYT said that at At M.I.T., Large Lectures Are Going the Way of the Blackboard:

Quote
At M.I.T., two introductory courses are still required — classical mechanics and electromagnetism — but today they meet in high-tech classrooms, where about 80 students sit at 13 round tables equipped with networked computers.

Instead of blackboards, the walls are covered with white boards and huge display screens. Circulating with a team of teaching assistants, the professor makes brief presentations of general principles and engages the students as they work out related concepts in small groups.

Teachers and students conduct experiments together. The room buzzes. Conferring with tablemates, calling out questions and jumping up to write formulas on the white boards are all encouraged.

“There was a long tradition that what it meant to teach was to give a really well-prepared lecture,” said Peter Dourmashkin, a senior lecturer in physics at M.I.T. and a strong proponent of the new method. “It was the students’ job to figure it out.”

The problem, say Dr. Dourmashkin and others in the department, is that a lot of students had trouble doing that. The failure rate for those lecture courses, even those taught by the most mesmerizing teachers, was typically 10 percent to 12 percent. Now, it has dropped to 4 percent.

OTOH, I've seen an interesting argument that

Lectures are an effective teaching method because they exploit human evolved 'human nature'

I'd like to make a comment about college admissions. If a university moves to "peer instruction", it may want to admit not just the smartest students who have learned the most in high school but those who can best participate in interactive classrooms and collaborate with students outside of class. I do wonder if holistic admissions in practice selects such students better than a mechanical process would.